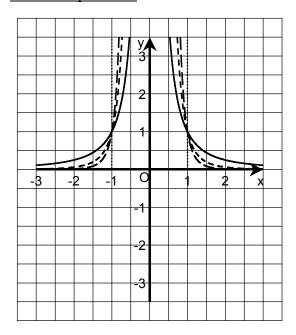

IV. Gebrochen-rationale Funktionen

1. Die Potenzfunktionen $f(x) = \frac{1}{x^n}$ mit $n \in IN$


Die Graphen dieser Funktionen lassen sich in zwei Gruppen einteilen:

Ungerade Exponenten

- Gemeinsame Punkte: $P_1(-1|-1)$ und $P_2(1|1)$
- Symmetrie: Punktsymmetrie zum Ursprung
- Grenzwertverhalten für $x \to \pm \infty$ Für $x \to +\infty$: $f(x) \to 0^+$ Für $x \to -\infty$: $f(x) \to 0^-$
- Grenzwertverhalten für $x \to 0$ Für $x \to 0^+$: $f(x) \to +\infty$ Für $x \to 0^-$: $f(x) \to -\infty$
- Bezeichnung der Nennernullstelle: Polstelle ungerader Ordnung mit Vorzeichenwechsel

Gerade Exponenten

- Gemeinsame Punkte: $P_1(-1|1)$ und $P_2(1|1)$
- Symmetrie: Achsensymmetrie zur y-Achse
- Grenzwertverhalten für $x \to \pm \infty$ Für $x \to +\infty$: $f(x) \to 0^+$ Für $x \to -\infty$: $f(x) \to 0^-$
- Grenzwertverhalten für $x \to 0$ Für $x \to 0^+$: $f(x) \to +\infty$ Für $x \to 0^-$: $f(x) \to +\infty$
- Bezeichnung der Nennernullstelle: Polstelle ungerader Ordnung mit Vorzeichenwechsel

Für beide Typen gibt es eine:

- waagrechte Asymptote mit der Gleichung y = 0.
- senkrechte Asymptote mit der Gleichung x = 0.

Eine Asymptote ist eine Gerade, an die sich der Graph beliebig nahe annähert.